How does Gretel-synthetics implement differential privacy?
The TensorFlow team has taken on a lot of the heavy lifting of implementing and releasing TensorFlow Privacy, an extension to TensorFlow that allows differentially private learning. Gretel synthetics implements TensorFlow’s open source code for DP-SGD in the Tensorflow-Privacy library with slight modifications to adapt it to recurrent neural networks, and improved the baseline performance by replacing the plain SGD optimizer with an RMSProp optimizer as it often gives higher accuracy than vanilla SGD (Tijmen Tieleman and Geoffrey Hinton, COURSERA: Neural networks for machine learning, 4(2):26–31, 2012).
Get Started
Ready to try Gretel?
Start making your job easier instantly.
Get started in just a few clicks with a free account.
Get started in just a few clicks with a free account.
- Join the Synthetic Data Community
Join our Discord to connect with the Gretel team and engage with our community.
- Read our docs
Set up your environment and connect to our SDK.